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Abstract 

In this paper we introduce Phylograph; a multifunctional and powerful tree 

editor particularly indicated for large Phylogenetic trees. Phylograph reads tree Newick 

and Nexus descriptions from an input file and displays a graph drawing of the tree. 

Several options facilitate the representation of the tree in different editable formats, 

including a HTML format suited to databases, in which links to accessions of online 

databases may be incorporated in output files. Phylograph easily roots the tree using one 

or more outgroups, simply via the computer mouse. It incorporates a wide set of 

functions to quickly expand, compress, invert, and/or rotate the tree. Phylograph also 

allows the cutting of branches and the incorporation of features and decorations such as 

brackets, boxes, and arrows. The program is a Java application. This means that it runs 

on most personal computers and workstations as a standard program. We also present 

here an overview of the algorithms used by Phylograph to represent Tree drawings of 

both, rooted and unrooted trees.  

Availability: Biotech Vana Bioinformatics (http://biotechvana.org) 

Introduction 

Based on similarity scoring, Phylogenetic analyses reconstruct the evolutionary 

history of biological species, genes, and proteins taken as Operative Taxonomical Units 

(OTUs). Each branch or cluster depicted in the Phylogenetic reconstruction usually 

represents a clade or monophyletic group comprised of all the sampled descendants of a 

single ancestral lineage. Three inference methods based on three optimization criteria 

are commonly used to reconstruct evolutionary history from molecular data: neighbour 

joining (Saitou and Nei 1987), Parsimony (Eck and Dayhoff 1966; Kluge and Farris 

1969), and maximum likelihood (Aldrich 1997 and references therein). The overall 

http://biotechvana.org/


efficiency of these methods in reconstructing the true tree is known to fluctuate in 

substitution rate, transition-transversion ratio, and sequence divergence (Miyamoto and 

Cracraft 1991; Nei and Kumar 2000). Results are usually saved in two of the most 

commonly accepted formats: Nexus and Newick (Maddison et al. 1997; 

http://evolution.gs.washington.edu/phylip/newicktree.html). To be phylogenetically 

interpreted, the information contained in both Newick and Nexus formats should be 

graphically represented as a branching tree, using tree editors, where each node with 

descendants represents the most recent common ancestor of the descendants, and edge 

lengths correspond to time estimates. With the current explosion in the amount of 

genomic data available, and exponential increases in computing power, biologists are 

able to consider larger scale problems in Phylogeny: that is, the reconstruction of 

evolutionary trees on hundreds or thousands of OTUs. One difficulty arises, however, in 

the interpretation and analysis of large trees; leaves overlap and font sizes are usually 

too small to be easily read. Therefore, large trees must be magnified or expanded to be 

clearly interpreted. Moreover, to be publishable, Phylogenetic trees usually require 

certain modifications and decorations that require the use of additional image editors. 

We have designed Phylograph, as a multifunctional application, to be a versatile tree 

editor capable of managing both large and small trees. It can handle, edit, and decorate 

all kinds of Phylogenetic trees and export them in different kinds of outputs. 

Phylograph overview 

System 
 

Phylograph is a Java application that runs on most personal computers and 

workstations as a standard program. The Model View Controller “MVC” (a 

programming pattern to maintain the independence data and visualization), has been 

used to divide the application into three different layers (Model, View, and Controller); 



The model layer contains the program’s logic and executable functions; The view layer 

defines the graphical user’s interface, presenting all visual elements in a main window 

(buttons, lists, text-fields, etc); and the controller layer provides the connection between 

the other two layers.  

Functions 
 

Phylograph is based on a main graphical interface (window) that incorporates a 

control panel (Figure1), which provides a set of options, as shown in Table 1. 

Phylograph also allows users to, via the computer mouse, rotate the tree, root the tree 

with one or more outgroups, hide branches; generate subtrees, change the colors of 

branches and decorate the tree with labels and brackets, which may be dragged or, in the 

case of brackets, resized as desired.  

Drawing tree algorithms  

Graphical representations of Phylogenetic trees constitute a particular case of 

graphs (for an extensive overview of graphs see Sugiyama 2002). According to the 

graph theory, a tree  T (V,E) is an abstract structure used to describe a limited set of 

nodes or vertices (V) connected by edges (E) or segments not allowed to overcross. A 

graph drawing is the spatial or graphical representation of the graph (in this case the 

graph drawing is a tree drawing). So the tree is transformed by “divide and conquer” 

principles, from the abstract representation T (V,E) into some arrangement of geometric 

objects (subtrees) enclosed in a multi-dimensional space called the drawing space, 

where  and . The drawing space for representing Phylogenetic trees is 

usually two-dimensional and more rarely three-dimensional. Phylogenetic trees T 

(V,E,δ) usually incorporate the length (δ) or extent of an edge as an additional variable 

usually defined by the genetic or protein distance between two nodes, or, in the case of 

majority-rule consensus trees generated by programs such as Consense of Phylip 

m≤1 Nm∈



(Margush and McMorris 1981; Felsenstein 2002), by numbers that correspond to 

consensus values defined by all groups occurring more than a certain percentage level in 

a consensus tree reconstructed from a file containing a certain number of trees. There 

are essentially two concepts for achieving drawings of Phylogenetic trees, rooted and 

unrooted (for an overview of Phylogenetic trees see Carrizo 2004). Rooted trees are “n-

ary” trees, where there is a specially designated node (the root), which is the common 

ancestor for the remaining nodes in a hierarchy of parents and children (note that a tree 

is “n-ary” if every internal node has no more than “n” children). OTUs are called leaves 

and nodes that are not leaves are called internal nodes. Children of the same parent are 

called siblings. Nodes are partitioned into subtrees where the level of a node is defined 

by letting the root at level zero, and a node at level “l” has children at level (“l”+1). The 

number of subtrees of each node is called its degree, and the maximum degree of all 

nodes is called the degree of the tree. The degree of a node is usually defined by letting 

the OTUs at degree zero. Unrooted trees represent the branching order, but do not 

indicate the root, or location, of the last common ancestor. Based on algorithm 1, a 

rooted tree is easy to layout by recursion (for an extensive overview of recursion see 

Shoenfield 2000; Causey 2001; Cori, Lascar, and Pelletier 2001). Basically, as shown in 

Figure 3, Phylograph visits in preorder traversal a given thrichotomic tree T (N,E,δ), 

takes the first open bracket as the root (Node 0) and recursively split it into subtrees to 

store the information. In other words, Phylograph takes the root and step forward along 

the upper pathway of open brackets (nodes) and detects a name or character defined by 

a comma (OTU J). As the tree is thrichotomic, the algorithm steps backward looking for 

new commas (Nodes 1 and 2 respectively), and steps forward again in order to find 

another character defined by a comma (OTU A). As descent is not allowed for OTUs, 

the next step is to read the sibling of OTU A that is Node 3, which, is at the same time 



parent of OTUs B and C. Next, the algorithm step backwards to achieve again node 1 

and visits Node 4  OTU F  Node 5  OTU D  OTU E, and repeats the process 

with the subtree defined by Node 6.  The tree and nodes are thus reordered by degree of 

subtrees. Finally, all the information concerning the tree is stored in a virtual list from 

which Phylograph allows the user to depict the tree drawing as both, slanted and 

rectangular cladograms, and as a Phylogram. Radial trees are layout via algorithm 2, 

which is a linear-time algorithm adapted with several modifications from Bachmaier et 

al. (2005). As shown in Figure 4, Phylograph remove the root and reconsiders subtree 

levels to establish a new node at level zero. To achieve a more aesthetically balanced 

structural fold Phylograph virtually identifies the longest chain of nodes. In accordance 

with this virtual shape, it reorders the subtree allocations. Then, the tree is visited in 

preorder traversal and all vertices are assigned a wedge “ω” of angular width 

proportional to its number of leaves, as shown in Figure 5. Then, the wedge of a given 

inner vertex “u” is divided among its children “v”, and children allocated in the 

drawing space. To improve and homogenize the amount of space needed by both small 

and big subtrees, we have designed an equal distant wedges method, as summarized in 

algorithm 3. Starting from the root, the algorithm visits each node and creates a wedge 

for each visible subtree from that node and swings these until the arcs of separation 

between wedges are equal. Thus, by symmetry and the better utilization of misused 

spaces, a more harmonic visualization of the radial tree is achieved, as shown in Figure 

6. 

Concluding remarks 

Phylograph´s applicability has been inspired by the versatilities of other 

applications such as TreeView (Page 1996), Drawgram/Drawtree (Felsenstein 2002), 

and Baobab (Dultier and Galtier 2002). The most remarkable requirements in 



Phylograph´s development were provided by the Gypsy database project (Lloréns et. in 

preparation). We conduct this online database, analyzing and classifying LTR 

retroelements, according to their evolutionary perspectives. In this project, Phylogenies 

are large and in continuous progress. Therefore, the required tree editor would be 

expected to have the capacity to dynamically manage, edit, root, and decorate graphical 

representation of large Phylograms and cladograms, as well as making it very easy to 

use in the handling of any kind of tree. We have satisfactory checked Phylograph in this 

project; particularly the HTML output generated by Phylograph is quite useful for easily 

linking Phylogenetic data to other information such us genbank accessions etc.  
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Figure legends 

Figure 1  

Phylograph´s control panel.   

Figure 2 

Screen shot of Phylograph functions executable with the mouse 

Figure 3 

Recursive layout of a Phylogenetic tree  

Figure 4 

Reordering the tree to draw a radial tree 

Figure 5 

Radial tree drawing  

Figure 6 

unrooted tree optimization   



Table 1 Phylo  
 
 
Phylo functions 

 1. Open a tree file; save graphical representation as a project;  re-edit the projects; exit  

2. Choose size, type of fonts and colors for OTUs, labels, bootstrap values, links and attachments  

3. Export the tree as an image (in png format); as a postcript file; and as format suitable for databases. The database format 

combines an HTML file with a png file; each OTU depicted in tree may incorporate a link to other HTML files and to 

Websites and online databases.  

4. Import, export, and edit a list of attachments specifics of each OUT; the list may be written and modified by users in a simple 

text file.  

5. Import, export, and edit a list of online addresses (for instance genbank accessions) that specifically link each OTU to other 

files and databases. This function is only available to generate HTML outputs; the list may be also written and modified in a 

text file.  

6. Compare two trees via two parallel windows, each one occupying half of the screen.  

7. Help  

8. Open a treefile  

9. Open a project file  

10. Save a treefile project  

11. Step-by step horizontally  expand a tree (specially indicated for large trees)  

12. Step-by step horizontally compress a tree (specially indicated for large trees)  

13. Step-by step vertically expand a tree (specially indicated for large trees)  

14. Step-by step vertically to compress a tree (specially indicated for large trees) 

15. Expands the entire tree  (specially indicated for large trees) 

16. Compress the tree (specially indicated for large trees) 

17. Fit the tree in the window 

18. Move the tree right  

19. Move the tree left  

20. Move the tree up  

21. Move the tree down.  

22. Shows or hide bootstrap values upper to a given number (by default zero).  

23. Invert the tree  

24. Depict the tree as a radial (unrooted) tree  

25. Depict the tree as a rectangular cladogram  

26. Depict the tree as a  slanted cladogram 

27. Depict the tree as a phylogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Algorithm 1:  tree layout  
Input: Newick or Nexus tree  
 
Data:      δ   :  Edge lengths 
               B   : bootstrap values 
               “(“ : Open parenthesis  vertices or nodes (step forward) 
               L   : Leaves or OTUs (any number, word, or character defined by a comma) 
               “ )”: Close parenthesis  vertices or nodes (step backwards)  
               “,” : Vertices or leaves separator 
               “:” : Bootstrap and edge length values separator 
               “;” : Tree end and optional information separator 
               M  : Optional information concerning the tree identity (n-ary tree)   
 
Output: spanning ordered tree ),,( δEVT  

1. If the input-tree is provided in nexus format the program directly turns the tree from Nexus format to Newick format 
2. Read the Newick tree from the left to the right  
3. Optional  remove the text behind the Newick tree end to delete possible commentaries, and store the tree identity (n-

ary tree)   
4. Let first parenthesis as vertex 0 (root). Then create a vertex in drawing space and remove the first open parenthesis and 

the last closed parenthesis in Newick tree  
 

a. Search for colons; If colons are not found, the Newick tree has not edge lengths or bootstrap values. Then, 
fix edge length values =1 for all vertices 

 
5. Search recursively for next vertex in the resultant Newick subtree  

 
i. Search for commas in the resultant Newick subtree.  

 
ii. If a comma is found; then such subtree is a vertex.  

iii. Else, such subtree is a leaf  
 

iv. Add a new vertex to the spanning tree  
 

v. If the Newick tree has distances; search for the last colon; else, assign edge length = 1 to this 
vertex.  

 
1. If the next Newick subtree defines a vertex, then load the text behind the last closed 

parenthesis. Get texts in front and behind the colon (bootstrap and edge length 
values); then, remove them 

 
2. If the next Newick subtree defines an leaf, store the text behind the colon (edge 

length); then remove it. If the leaf name is surrounded with quotes, remove the quotes. 
 

3. Assign bootstrap and edge length values to this vertex  
 

vi. If this vertex corresponds to a leaf, algorithm finishes for this branch (descent is not allowed for 
leaves).  

 
vii. Else, if the vertex corresponds to an internal vertex; then remove the first open and the last closed  

viii. parentheses of the Newick subtree; then separate inner subtrees of the same level from subtree. 
Repeat recursively this process with each internal vertex until reach a leaf again 
 

6. Preorder traversal and set level, degree, and number of leaves of the spanning tree ),,( δEVT  

7. Allocate x, y coordinates for all  ),,( δEVTv∈  
a. Let in preorder traversal, X coordinates for all v following   

i. ),( vuXX uv δ+=   

1. where (Xroot = 0)  and )(vparentu ←  . 
b. Let Y coordinates for all v following 

i. For leaves  in preorder traversal following  knY vv ⋅=   
1. where“n” is the number of leaf assigned to “v”  and “k” an arbitrary constant  

ii. For internal vertices  in postorder traversal following 
2

nv
u

YY
−

=  

 
 
Algorithm 2:  radial layout  



Input: rooted tree ),,( δEVT  
 
Data:      δ :  edge lengths 
                l :  vertex arrays (number of leaves or OTUs in subtrees) 
               degree: number of subtrees of a vertex. 
                level: vertex levels letting level zero for root. 
Output: x, y coordinates for all  Vv∈

1. Remove the root from the rooted ),,( δEVT  and reconsider subtree levels, establishing a new node at level zero. 
 

a. If the degree of root equals 2 then ),,( δEVT  is a dichotomic; remove node 0 and let the last child of root 
at level zero (drawing root); then, add the first child of the old root to drawing root. At this point, the 
drawing root has degree 3. 

 
b. Else, if the degree of the root is higher than 2 then ),,( δEVT is a multichotomic; the last child of root is 

set at level zero (drawing root) and its father (old root) is set at level one as another children of the drawing 
root and all vertex levels are relabeled. 

 
2. If the edge of a given vertex has negative value, let this length according to the minimum length among all tree edge 

 
3. Else, if edges have zero length, the tree is ; then , let edge lengths equal 1.  ),( EVT

 
4. In postorder traversal, identify the linearly-largest chain of vertices (number of vertices), then, reorder the spanning 

),,( δEVT to aesthetically equilibrate the further fold of the radial layout. Else, if are possible chains are equal then 
choose the first option loaded.   

 
5. Allocate the coordinates of the drawing root (vertex 0) at the point (0, 0) of the drawing space with a virtual wedge of 

angular 2π width.  
 

6. Identify subtrees T(v); and let the number of leaves for each subtree, considering only leaves. 
 

a. Leaves have a value of 1. 
b. Vertices have a value equal to its number of descendants.  

 
7. Do recursively in preorder traversal: 
  

a. Assign to each subtree T(v) a wedge “ω” of angular width proportional to its number of leaves in 
),,( δEVT  according to:   

))],,(([
))](([2
δ

πω
EVTleaves
vTleaves

⋅=  

b. Divide, proportionally, the wedge of a given inner vertex “u” among its children “v” 
 

c. Allocate “x, y” coordinates for all vertices in the drawing space, according to the algorithm below and rules 
1-3: 

 

   ))sin(),(cos(),(),(),( vvuv vuyxyx ψτψτδ ++⋅+=            

1. If ”v” is a internal node then 
2

v
v

ω
ψ =    

2. If “v” is a leaf and the first child of “u” then 
100

v
v

ω
ψ =    counterclockwise  

3. If “v” is a leaf and the last child of “u” then  vv ωψ ⋅=
100
99

  clockwise 

 

 
 
 
Algorithm 3:  unrooted tree optimization algorithm 



Input: unrooted tree ),,( δEVT  
Data: x, y coordinates from vertices 

φ: angle of a vertex in polar coordinates 
r: radius of a vertex in polar coordinates 
τ: starting angle of a subtree 

  ώ: ampleness of a wedge 
Output: optimized unrooted tree 
 

8. Starting at root, in preorder traversal, do in each vertex: 
a. If the vertex is a node, set wedges for all visible subtrees from that node following these steps: 

i. In preorder traverse all the subtree, get the angle formed between each vertex  of that subtree and 
the current working node transforming rectangular coordinates to polar by its x and y 
coordinates.  
The rightmost and leftmost angles of a subtree are the right and left borders of its wedge. This 
wedge defines a triangle of minimum area enclosing the subtree.  
 

 

 

12 xxa −=

12 yyb −=
22 bar +=  

ra=)cos(φ  

rb /)sin( =φ  
 
 

b. Get the angle of separation values between the left border of each wedge and the right border of the next. If 
current node is the root w3 will be the third children, else, it will be the father subtree. 
 

LR 121 ωωα −=  

LR 222 ωωα −=  

LR 313 ωωα −=   

 
c. Get the mean value of that separation values. At the end, all the separation between wedges will be set to this 

value. 
 

3)(∑= αα  

 
d. Get the difference between the separation value and the mean value to correct the position of each subtree. 

 

11 ααδ −=  

22 ααδ −=  

33 ααδ −=  

 
e. If the vertex is the root, it has three.  

The first children subtree will be kept fixed.  

Rotate second and third children subtree 1δτ +vertex  

Rotate third children subtree to 2δτ +vertex  

 
f. Else, it has two children subtrees and a father subtree. The father subtree will be kept fixed since it has been 

previously optimized. 

Rotate first and second children subtrees to 3δτ +vertex  

Rotate second children subtree to 1δτ +vertex  

g. Finally, translate polar coordinates into rectangular for graphical visualization. 
 

 
 


	 
	Phylograph: A multifunction Java editor for handling Phylogenetic trees 
	Abstract 
	Introduction 
	Figure legends 

